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Abstract: On the basis of the given material, in order to increase the RON retention of the catalytic 

cracking unit, the prediction model of gasoline octane retention and the best operation variable 

inversion model were established based on the Ridge regression model and Gradient descent method. 

First, based on the Ridge regression model, the leave-one method is used to obtain the relative 

importance of the operational variables, and select the most important variables, so as to reduce the 

characteristic dimension of the model; Then, the RON retention prediction model is trained based on 

the Ridge regression model; Finally, based on the trained Ridge regression model and its weight 

parameters, the optimal operating variables were optimized separately using the gradient when the  

operation variable has a range or no range of value. The experimental results show that when 146 are 

selected from 361 operating variables, the model loss value stabilizes; when α is 0.6, the test set R2 is 

0.9882, test set MSE is 0.0193, and the comprehensive performance is better than the random forest, 

support vector machine model; When the operation variable has two categories of value range and no 

value range, 2,000 times, the best inversion value of the operation variable makes the RON retention 

prediction value of the test sample similar to the expected value, and the MAE drops to 2.89999×10-3 

and 7.62939×10-6, respectively. In conclusion, the RON retention prediction model proposed in this  

study has good results, and the best operating variable can be reversed, based on the given material 

parameters, making the optimal RON retention quantity. 
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1. Introduction  
In China, there were 297 million vehicles owned by September 2021, gasoline vehicles account for 

the largest proportion among them, that is, the number of gasoline vehicles in China cannot be ignored, 

resulting in the use of gasoline and the research work cannot be stopped [1]. More than 70% of the 

gasoline used in China is produced by catalytic cracking, [2-4] and the process will also produce 95% 

of the sulfur and olefin, which will inevitably produce a large amount of air pollution after the gasoline 

is used. Therefore, in order to reduce the proportion of harmful substances (such as sulfur element and 

olefin) or the material content of harmful gas, gasoline merchants must make further refining treatment 

for catalytic cracking gasoline to meet the quality requirements of gasoline. In the refining process, it is 

found that the Research Octane Number (RON) after refining is always less than the RON phenomenon 

before refining, [5, 6] but the RON is one of the most important measures to evaluate the quality of 

gasoline. When the RON is increased, the car can have a stronger anti-explosive performance, and 

indirectly reduce a small amount of fuel consumption, at the same time, protect the engine. Each increase 

of RON can reduce fuel consumption by up to 1.4%, and the annual total oil saving of global gasoline 

vehicles can also reach amazing values. Therefore, improving RON also indirectly contributes to carbon 
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peak and carbon neutrality, which is of great significance to fuel resource conservation and environ –  

mental protection [7]. 

Therefore, now the oil refining enterprises focuses on exploring the chemical industry model, which 

can be both in the catalytic cracking process, the process and technology of gasoline catalysis and 

hydrogenation conducted by oil refining enterprises, to ensure that the harmful substances in gasoline 

are lower than the highest concentration allowed by the government; to improve the accuracy of 

predicting RON, operational parameter scheme, and the RON content in gasoline [8-11]. Therefore, the 

model can also reduce the pollution for the society and improve the economic benefits for enterprises. 

Because the oil production process involves more than 300 related parameters, it is complicated to judge 

whether each operation parameter is beneficial or affects the oil production; to judge its influence mode 

and influence degree; to forecast the optimal matching parameter value and the highest possible the 

retained RON. It is necessary to find the mathematical expression that can reflect the operation 

parameters and retained RON as true as possible through the machine learning model and programming 

code. Traditional RON prediction methods not only consider relatively few variables, but also lack the 

process variable analysis, and do not consider the correlation between the variables [4]. 

Han Qingjue and Zou Min et al. used the grey association model to screen the factors mainly affecting 

the RON loss from the processed data, and used them as input variables in the model [12] and then 

established a prediction model based on the BP neural network. Finally, more than 85% of the absolute 

error was less than 0.2 units. Zhao Lin and Ling Xi et al. proposed an adaptive variable-weighted RON 

prediction method, [4] which captures the correlation between variable data by using a new variable 

weighting module. The variable weight is automatically generated according to the importance of RON. 

In order to analyse the influence of sulfur content on RON, the predicted value of sulfur content and 

RON are output together with the adaptive weighted variable, and show high prediction accuracy and 

model performance. Jiang Wei et al. used the RFR model to predict the loss of RON of catalytic cracked 

gasoline, [13] and used the prediction effect as a benchmark, and found that the prediction accuracy, R2, 

and the Root Mean Square Error (RMSE) of the modified PCA-RFR constructed RON loss prediction 

model were 99.13%, 0.983, and 3.2169×10-4, respectively. Qin Qingtao and Gu HNA considered the 

nonlinearity and mutual strong coupling between the variables [14] and used the multivariate auto-

regression log-linear method to select the main variables to establish the RON prediction model. Chen 

Chan and Hu et al. firstly selected 25 feature variables using the Pearson-MIC-random forest method, 

[7] then predicted and optimized the XGBoost and optimization model of retained RON loss value. The 

RMSE, MAE (which equals to the total absolute value of the difference between the target value and the 

predicted value [15]) and the coefficient of determination of the model were 1.3197, 0.3581, and 0.9981 

respectively. The coefficient of determination is also known as the degree of information interpretation, 

and as R2. It indicates the amount of information the data contains: The closer the value is to one, the 

more sufficient the information expression is, represents that the actual problem situation is relatively 

more suitable for the model; If staying away from one, the more information is lost. Inevitably, the model 

is relatively not applicable for current practical problems [16]. Among these algorithms that select the 

features, only a small part of the features is retained to simplify the model fitting procedure while 

satisfying the minimum prediction accuracy requirements. In practical engineering, the accuracy should 

be improved as the primary goal to screen features, and the retention method retains more interactions 

between features in the selection process to improve the accuracy of model prediction, so the literature 

chooses the retention method to screen features. Although the above model has also achieved good 

prediction accuracy, if the appropriate iterative algorithm can be further used to reverse push and 

optimize the operation parameter scheme, both the prediction model can be fully utilized and improve 

the retained RON. 

Zhang Fengyu et al. developed the machine learning model, [17] which used the maximum 

information coefficient to elaborate high nonlinear and coupling relationships and screened 35 

significant variables from 353 variables for modelling. In the process of optimizing the back propagation 

neural network and logistics regression, the addition of the dragonfly algorithm makes this hybrid model 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 75 (1), 2024, 12-32                                                              14                                 https://doi.org/10.37358/RC.24.1.8580                                                        

    

 

 

balance between local search and global search. The mean squared errors of the training and test sets 

were 0.0241 and 0.0413 respectively, and the mean absolute errors were 0.0982 and 0.1505 respectively, 

indicating the high accuracy and strong generalization ability of the integrated model. After optimizing 

the optimized process, 163 samples reduced RON loss by 70%, and another 128 by 50% to 70%, while 

all samples had optimized SC to below 5 μg·g-1. The key operating variables proposed by Huo Haoling 

et al., were identified by both the grey association analysis method and the partial least squares regression 

analysis method [18]. They then used the BP neural network to build a prediction model, and use genetic 

GA to optimize the BP neural network. Its average error, maximum absolute error, and prediction 

accuracy respectively are 0.051 units, 0.121 units, and 99.16%. Finally, they propose the optimal 

operation scheme, which reduces RON loss by 30%. Zhang Zhongyang et al. used a catalytic cracking 

reaction-regeneration system in a refinery to establish a BP neural network with 6-11-1 structure [19]. 

The neural network was optimized by genetic algorithm and successfully reduced the Mean Square Error 

(MSE), which is the sum of the square of the distance between the predicted value and the real value, 

[15] from 5.16 to 4.92%. Wang Jie and Chen Bo et al. selected 21 input variables and 1 output variable 

from 273 variables based on MIC and Pearson correlation coefficient method, and then used these 

variables to establish the BP neural network product RON optimization model [20]. The model structure 

is 21-14-1, and since the predicted MAE and R2 are respectively 0.1163 and 0.9601 with the actual 

values, there is a good fit and generalization ability. The established prediction model was combined 

with the genetic algorithm GA algorithm, and then optimized operation variables, which reduced the 

product RON loss by 25% on the premise of ensuring the desulfurization effect. The algorithm mainly 

predicts the data through complex artificial intelligence algorithms such as neural network and genetic 

algorithm. The neural network has the essential characteristics of poor interpretation, and the genetic 

algorithm model will appear emergencies and fall into local optimal values when predicting complex 

problems. The principles of these models are complicated and difficult to explain. In practice, the Ridge 

regression models are relatively easy to explain. The purpose of parameter optimization is to ensure that 

the best parameter scheme can adapt to practical engineering, but currently few researchers distinguish 

between the range of operating parameters and not the range of operating parameters, so that the search 

for the 'best solution' may be meaningless. 

In order to ensure that the model is simple and the prediction is accurate enough, the Leave-One-Out 

based on Ridge regression model is adopted to select some operating parameters, and fit the data with 

Ridge regression model to select the best hyper-parameter α and the weight values of the operating 

parameters, and finally find the functional relationship expression for predicting retained RON. The 

Ridge regression model was contrasted with other regression models to verify its relative applicability. 

In order to make full use of the established model, the model can not only predict the new samples, 

but also use the Gradient descent method to select the best operating parameter scheme and the 

corresponding best retained RON. With or without the operating parameters bounds, the inversion of the 

selected operating parameters is performed to find the best operating parameters and the highest retained 

RON in both cases. The retained RON in the operating parameter range is more in line with the actual 

engineering requirements, while the no parameter limit can observe the maximum possible retained 

RON, which can help enterprises to analyse the difference between the two and explore the possibility 

and necessity of expanding the parameter range. It is worth noting that in the establishment of Ridge 

regression model, the raw material, adsorbent, and product performance were used as factors affecting 

the refining effect and as parametric variables of the model. However, because the three parameters are 

determined by the process before the catalytic cracking process, these parameters are not considered 

when performing the inversion of the operation parameters. 

For the actual oil refining enterprises or other chemical production enterprises, more specific 

modelling thinking, and Python code are provided. And shares some thinking, such as the method of 

solving the number of necessary iterations, finding the optimal operating parameters and target values 

using the Gradient descent method, and also shares the direction that can be improved for the study. 
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2. Materials and methods  
2.1. Data collection and pre-treatment 

2.1.1. Data collection 

The data of the literature comes from the 2020s Data Modelling Competition, which can be found 

by the browser, and contains the petrochemical real-time data of Sinopec Gaoqiao. The operating 

variables were collected from April 2017 to May 2020, including the data from 354 sites on the 

engineering equipment and devices, so the data from these 354 operating parameters (including 

temperature, pressure, device flow, etc.) will be used later in the study. The study focuses on the RON 

contained in the pre-refined and post-refined oil in the 325-samples data of the question bank. RON 

serves as the dependent variable of the mathematical model and operational parameters as the 

independent variable of the model. 

Because the operation parameters can be adjusted in the catalytic optimization process, they are used 

as the inversion object when performing the parameter inversion. In the question bank, there are 14 raw 

material properties (e.g., sulfur content, RON, aromatic hydrocarbon, etc.), refined product properties 

(e.g., sulfur content and RON), and properties of raw and regeneration adsorbent parameters (e.g., coke 

content before and after adsorption), which do not belong to the operating parameters controlled by 

catalytic cracking engineering. 

2.1.2. Data pre-treatment 

In all kinds of projects, there are always some original data that are incomplete, which is a very 

common phenomenon in actual engineering, and the project also has this phenomenon. There are also 

two problems with the data generated at different sites of each device: some operation parameters contain 

only partial time period data; some operation parameters are all null or some data is null. Therefore, 

before building the simulation of the data, the following is necessary to pre-process the original data to 

facilitate the subsequent model fitting and analysis. Data pre-processing method is performed as follows: 

Removal of duplicate values. Due to no completely sound management ability and reliable 

calculation method, accidental sample data duplication errors cannot be avoided in the process of data 

collection, which need to be removed manually. 

Deletion missing. For sites containing only some time points, if the data missing (%) is more than 

20%, and it cannot be supplemented, so that the index and row data will be deleted. 

Fill the empty value. For some sites where the data is null, the data at the null value is replaced by 

the average of the two firstly and second hours. 

Manual removal of the outliers. There are some original data beyond the reasonable range of process 

and operation experience, which can be convenient manually, but the code is inconvenient to find out, 

thus it is more suitable to reduce the code complexity through manual elimination. 

The 3σ criteria removed outliers. Equal precision measures the variables to be measured, yielding x1, 

x2, ......, xn, and the mean value (x) and the residual error (vi = xi -x (i= 1, 2, ..., n)) can be calculated, 

thus the standard error (σ) can be obtained by using the Bessel formula. When The residual error (vb, 

1≤b≤n) of a measurement meet the condition (| vb | = | xb - x | > 3σ, take xb as an invalid value with a 

coarse error value and delete it. Equation 1 is a Bessel formula (Zhao et al., 2022; Jin et al., 2021) [21, 

22]. 
n n n

2 1/2 2 2 1/2

i i i

i=1 i 1 i 1

1
[ v ] {[ x ( x ) / n] / (n 1)}
n 1 = =

 = = − −
−
  

          (1) 

 

where Σ is standard error; vi is remainder error; vb is the remaining error of xb; xiis measured value; n 

is sample number. 

Use Bessel's formula to filter repeatedly, in other words, calculate the mean and find outliers and 

then it around. 
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2.2. Feature processing 

2.2.1. Feature screening (Leave-One-Out) 

There are 354 operation variables in the database, and the number of operation parameters already 

belongs to the number of large-scale operation parameters. If all the operation parameters are used for 

model calculation, it will cause unnecessary computer card machine, excessive waste of memory 

resources, and too long calculation time to affect the work efficiency. At same time, the modelling 

process may be overfitting due to containing too many useless indicators, and even the calculation results 

will appear large error, so that the work results cannot be used. Therefore, the operation parameters need 

to be screened by the Python code and the Leave-One-Out method based on Ridge regression model 

before modelling. The Leave-One-Out method retains more interactions between features in the 

selection process, so that the goal of various feature selection can be uniformly optimized [23].  

2.2.2. Data partitioning 

The target object of the study is the retained RON after catalytic cracking performed by the S Zorb 

device (catalytic gasoline adsorption and desulfurization device). In order to solve the problem of 

constant lag of octane measurement, and of the possibility of overfitting by large lack of operating data 

leading, the average of the operating variable data for the first two hours of octane data measurement 

was taken as the operating variable data at this time. The qualified 325 samples were divided into training 

and test sets. Among them, 176 sets of data from 17 April 2017 to 31 December 2018 were divided into 

training sets, and 149 sets from 2 January 2019 to 26 May 2020 were classified as the test set. 

2.2.3. Standardization / normalization 

There is a phenomenon in the common data problems in life, that is, manydifferent variables often 

contain partial variables with different dimensions. The normalization can eliminate the effect of the 

dimension on the result, and make the different variables comparable [24]. For example, compare the 

performance strengths of the two people. The sum of Chinese (150 points in total) and sports (10 points 

in total) as the total score. A's Chinese and PE scores are 135 and 9 respectively, while B's Chinese and 

PE scores are 140 and 6 respectively. Although B's total score (146 points) is greater than that of A (144 

points), A's Chinese and sports performance are superior, and B's sports is worse. From the perspective 

of data, B is better than A since its total score is higher, but from the perspective of social cognition, 

since both scores of A’s are close to full marks, A is better. Therefore, standard normalization needs to 

be done before data modelling, like the statistical comprehensive performance method. The new 

parameter data after normalization or standardization method has the characteristics of mean value of 

zero and standard deviation of one. The transformation formula is shown in equation 2. Finally, 

standardized regression processing. 

                                                                     /)('X μ−= x                                  (2) 

 

where X' is the normalized data; μ is the mean of the sample; σ is the standard deviation of the sample. 

 

2.3. Data collection and pre-treatment 

2.3.1. Feature selection (Leave-One-Out method） 

In the literature, 0.5 of α was assumed in advance, and an operation parameter was used to find the 

predictive value, and compared with the actual value and find the MSE. Then another operation 

parameter was added to fit again to find the predicted value and MSE. And so on, one operation 

parameter was added at a time and fitted once with a Ridge regression model, until all 354 parameters 

were added to the model, seeking the predictive value and MSE. Therefore, the data of the corresponding 

test set MSE, training set MSE, weight value MSE and training R2 for different feature numbers can be 

displayed and compared with a graph, to facilitate visual observation, analysis and select the appropriate 

number of features. When selecting the number of features, the specific selected feature indicators can 

also be selected. 
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According to assuming α as 0.5, and using the Ridge regression linear model algorithm, the code can 

find the best number of parameters, and the feature combination. The process takes the comprehensive 

error Mz as the measure feature standard, and the best number is found according to the number of 

parameters-mean variance map. Mz algorithm is shown in equation 3. 

 
)*5.0*5.0(M estz ttrain  +=                                   (3) 

 

where Mz is the integrated error; σtrain is the mean variance of the training set; σtest is the test-set mean 

variance. In order to intuitively feel the size of the RON and the MSE for different numbers of features, 

the number of features was extracted in three contrasting cases. For example, when the number of 

features feature_num equals 1,146 and 361. Then, the training set and the test set were fitted with the 

Ridge regression model, and the degree of coincidence between the actual values and the predicted 

values was used to judge the fitting effect of different feature quantities. 

2.3.2. Ridge regression 

Prediction continuous data methods often use least squares and Ridge regression linear model 

algorithms, but the two face different situations. Ridge regression is a biased estimation regression 

method to deal with the presence of collinearity data [25, 26]. Fundamentally, it is a modified model of 

the least squares’ method. Partial information and accuracy are sacrificed to fit a more realistic and 

reliable regression model, and it is more applicable than the least squares method when the data is sick 

[27]. Many characteristic variables often have a high collinearity relationship in engineering, including 

the gasoline refining project in the literature. If the project uses the least squares method, the 

generalization ability of the fitting model will decrease. In other words, the accuracy of predicting the 

new sample is less than that of the Ridge regression model; Although the R2 of the Ridge regression 

equation is often slightly lower than that of the ordinary regression analysis, the significance of the Ridge 

regression is often better than the ordinary regression analysis, and it has more practical value when 

there are collinearity problems in the actual data and more pathological data. Therefore, the Ridge 

regression linear model algorithm is used in the study. 

Select the best hyper-parameter α. When selecting the appropriate number of features in the previous 

step, the pre-set α value is 0.5 (often applicable α value), however, in the actual modelling process, the 

model needs to verify different α s and select more appropriate α. The study separately fitted different α 

values in the range of 10-4 to 104 and 10-2 to 102, and then the suitable α was selected by analysing 

theconvergence of the weight value, the MSE size of the test set, and the change trend of the R2 in the 

training set. Because the more the α is larger than the appropriate minimum α, the more information is 

lost, [28] it is necessary to find the minimum hyper-parameter α value in the appropriate range and make 

it serve as the best hyper-parameter α in the Ridge regression model. 

Use the loss function of the Ridge regression to find the appropriate hyper parameter α of the 

normalized coefficient stability period with the corresponding coefficient vector. The complete 

expression of the loss function of the Ridge regression model is shown in equation 4. 

 

 ^2||w||α^2||y-Xw||min ) θ ( J 22 +=                           (4) 

 

where J(θ) is loss value; α is complexity parameter controlling the amount of shrinkage, collectively 

referred to as the hyper-parameter; X is an independent variable matrix; w is weight; y is dependent 

variable.  

2.3.3. Model comparison 

In order to verify whether the Ridge regression model is more suitable for the project compared than 

other models, multiple commonly used applicable models (e.g., decision tree, linear regression, random 

forest, Bayes, etc.) are established. Fit with training set data firstly, and then verified with test set data, 
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finally the predicted value of each model is compared with the actual value and the MSE of each model 

is calculated. For easy visual observation, the MSE and the training set R2 of the training set and the test 

set of each model are shown in the broken line chart and compared. When choosing an appropriate 

model, the researcher should not only consider R2, but also consider the test set MSE and generalization 

ability comprehensively, and finally select the optimal model for modelling.  

2.3.4. Gradient descent algorithm 

Gradient descent method is an iterative inversion method with the gradient as the search direction. 

The loss function of the Ridge regression model is used to evaluate the accuracy of the model. Normally, 

the smaller the value of the loss function, the higher the accuracy of the model. The Gradient descent 

method is used to find the minimum loss function. Exploring this lowest point is like looking for the 

lowest point in a valley; By using the derivative in calculus and finding the derivative of the function at 

every step, can find the downward direction of the function in the valley or the lowest point / extreme 

point. 

Through the gradient of continuous decline, the weight and deviation in the loss function are 

constantly adjusted, and the loss function is constantly reduced. When the loss value is the minimum or 

the local minimum is the same as the gradient is zero, the corresponding operation parameters are the 

local optimal or the global optimal scheme. However, if the step length is too large, the loss value may 

be larger. In general, the gradient shows a decreasing trend with the increasing number of iterations. In 

order to explore the appropriate number of iterations, the number of iterations and the effect of iterations 

are shown with charts.  

2.3.5. Parameter inversion based on the gradient backpropagation algorithm 

Operation parameter range is not set: The operational data in the original data source must not be the 

best operating parameter value. To allow the established Ridge regression model work to play more 

roles, it can be used to increase retained RON when refining gasoline in practical engineering. In other 

words, the previous established Ridge regression model was iterated, and the appropriate number of 

iterations was found by the Python code of the Gradient descent method. Then, the best operation 

parameters corresponding to the iteration number are brought into the Ridge regression model to find 

the predicted RON value after the inversion. The obtained predicted retained RON value is compared 

with the actual retained octane value before the inversion of the operational parameters, so as to 

understand the optimization degree of the proposed modelling method. The optimized predicted retained 

RON is compared to the expected retained RON, the amount of all retained RON in oil, to know the 

room for continued iterative inversion. Through this programming thinking, people can understand the 

method of finding the best number of necessary inversions, and the increasing degree of RON retention 

after parameter inversion. 

Set the value range of the actual operation parameters: In actual engineering operation, many 

operating parameters cannot pursue the highest retained RON due for cost, safety or other factors. 

Therefore, basing on the above step, the Gradient descent method is still used to manually add the value 

range of the parameters in the Python code. The specific value range data is still derived from the 

question bank of the 2020 mathematical modelling competition. From the theoretical analysis, the 

optimal inversion number of the limited parameter value should be different from that of the unlimited 

parameter range, and the optimal operation parameters obtained when limiting the value range of the 

operating parameters are more feasible. 

 

3. Results and discussions 
3.1. Feature selection (Leave-One-Out method based on Ridge regression) 

The Python code of the Ridge regression model is run to show the change trend of the MSE of the 

training set and the test set with the number of operation parameters. The best number is calculated 

according to the number of parameters-mean variance map, as shown in Figure 1. 
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Figure 1. Training-training set / test set mean variance plot  

for different feature quantities 

 

As can be seen from Figure 1, with the increase of the number of features, the MSE of the training 

set firstly drops rapidly and then stabilizes around the error of 0.04 units. At this time, the number of 

features is about 150, and then the MSE gradually decreases to 0.01, indicating that the model fitting 

effect is getting better and better; When the number of features varies from 0 to 150, the MSE of the test 

set firstly decreases and then stabilizes. After more than 150, it grows from slowly to fast, indicating that 

the model later appears overfitting phenomenon, and lead to a decline in the generalization ability; 

Training set R2 firstly increased rapidly and then stabilized to around 95.2%, and finally rose to 98%. 

The number of features can be selected when the MSE of the training set and the minimum MSE of 

the test set are stable. Because this condition is satisfied when the number of features is 146, 146 is the 

best number of features, and the 146 features are also used in the subsequent Ridge regression model 

training in the study. 

In order to distinguish between the fitting effect of the training set and test set in the three cases of 

too few, suitable and too features, the broken line diagram shows the curve coincidence degree of the 

predicted value and the actual value when the feature_num is 1, 146, and 361 respectively, as shown in 

Figure 2. 
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Figure 2. umber of features-the fit effect of the training set / test set. 

(a) feature_num = 1; (b) feature_num = 146; (c) feature_num = 361 

 

By observing Figure 2, it is easily seen that, when the number of features is feature_num is 1 or 361, 

both the actual value curves of the training set and the test set are worse than the two curves when the 

feature number is 146. Interpreted from the professional perspective of the numerical analysis, the fit of 

the training set and the test set show an under-fitting effect when the number of features is one. 

Under-fitting can be considered that, when the model fits the training set data, the data points used 

in the model are too far away from the actual data points of the project, and make the error between the 

prediction value of the training set and the actual value is too large. Inevitably, the prediction must not 

achieve the test accuracy usually required by the test set or the new sample set data. Therefore, it is also 

believed that the model is insufficient to "learn" the "general law" in the data set [29]. 

When feature_num is 146, the fitting effect of training set and test set is relatively best. The fit of the 

training set/test set was over-fitted at a feature_num of 361. Overfitting is that the model goes through 

each actual data point of the training set as much as possible during training, in order to avoid the under-

fitting phenomenon. Despite the model is well suited to the data prediction effect of the training set, it 

usually causes the model to be more distant from the actual value when predicting the test set or the new 

sample. Therefore, it can be considered that the model's "learning" ability is too strong, or the 

generalization ability is too weak [29]. 

Generalization ability is the ability of machine learning algorithms to adapt to fresh samples [30]. 

The purpose of learning is to use the model to collect the rules behind the data that is not easy to be 

detected by human beings, and to require that the prediction value error of the training set is within a 

certain range. And the prediction error of the model with good generalization ability when predicting 

other data sets with the same law should also be within the appropriate or very small range.  
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3.2. Equations 

 
Figure 3. Ridge coefficients as a function of the regularization 

 

On Figure 3 when α is around one, the weight coefficient uniformly levelled off. Moreover, when 

the α is greater than one, the R2 of the training set begins to drop sharply, indicating that the degree of 

agreement between the experimental data and the fitting function decreases sharply when the α is larger 

than one, so the α cannot be larger than one. Meanwhile, the MSE of the test set begins to rise rapidly, 

which further indicates that the value of α cannot be larger than one, so it can be considered that the α 

optimal value is around one. 

According to Figure 3, it is not possible to clearly observe the weight value trend of α around 0.6, so 

that the graph is enlarged in the range from10-2 to102 to observe the convergence of most of the weights 

when α is 0.6, as shown in Figure 4.  

 

 
Figure 4. Convergence of most parameters with α of 0.6 

 

From Figure 4, when α is 0.6, almost the ownership weights tend to converge; The test set MSE also 

tends to the minimum; And the training set R2 begins to drop sharply. Therefore, it is reasonable to use 

the α of 0.6 as the hyper-parameter value for this Ridge regression, and the literature also uses the α of 

0.6 for the analysis study when using the Ridge regression model. Finally, the relationship expression 

between operation parameters and RON is obtained, and the expression intercept is 2.74524575722225 

×10-3. For the selected operation parameters, and the value ranges and weights of each parameter, see 

Table 1. Filtered Operation Parameters, Parameter Value range, and Weight Values. 
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Table 1. Filtered operation parameters, parameter value range, and weight values 

 
No.  Item Name Span  Weight 
1 - (Raw material properties)RON - 0.830015597 
2 - (Raw material properties)arene, v% - -0.043006862 

3 - 
(Raw material properties) bromine number, 

gBr/100g 
- -0.007754015 

4 - 
(Raw material properties)density (20℃), 

kg/m³ 
- 0.043257492 

5 - (Nature of standby adsorbent)coke, wt% - 0.00499942 

6 - (Nature of standby adsorbent)S, wt% - 0.041182071 

7 - 
(Nature of the regenerative adsorbent)coke, 

wt% 
- -0.081841565 

8 - (Nature of the regenerative adsorbent)S, wt% - 0.017127962 

9 S-ZORB.FT_1002.PV 1#Catalytic gasoline intake unit flow rate 0 - 140 -0.273538408 

10 S-ZORB.TC_2801.PV Reducer temperature 200 - 350 0.12514685 

11 S-ZORB.TE_9002.DACA D-203 - Top outlet pipe temperature 10 - 50 0.002198672 

12 S-ZORB.FT_5201.PV 
Flow rate of the product gasoline outlet 

device 
10 - 155 0.10860839 

13 S-ZORB.TE_5002.DACA C-201 - Lower feed pipe temperature 100 - 150 -0.837236397 

14 S-ZORB.TE_1201.PV D104 - Temperature 100 - 150 0.605531538 

15 S-ZORB.PT_6009.DACA Preheater air outlet pressure 0 - 1.5 -0.028822969 

16 S-ZORB.TE_5102.PV Dry gas outlet unit temperature 20 - 40 -0.048319417 

17 S-ZORB.FT_1003.PV 2#, Catalytic gasoline intake unit flow rate 0 - 75 -0.026973779 

18 S-ZORB.PT_9401.PV Purify the air inlet device pressure 0.35 - 0.60 -0.043687896 

19 S-ZORB.TE_1601.PV Heating furnace inlet temperature 350 - 400 -0.085858854 

20 S-ZORB.FT_9401.PV Purify the air inlet device flow rate 25 - 900 0.015678794 

21 S-ZORB.FC_5202.PV Flow rate of refined gasoline outlet unit 90 - 160 -0.106637214 

22 S-ZORB.FT_9102.PV Flare gas discharge flow rate 20 - 20000000 0.065487634 

23 S-ZORB.BS_LT_2401.PV Closed lock material bucket liquid level 2.5 - 62.5 0.089349976 

24 S-ZORB.FC_2601.PV 
R102 - The regenerator boosts the nitrogen 

flow rate 
2 - 100 0.092819321 

25 S-ZORB.TE_5006.DACA Stabilize the tower bottom outlet temperature 100 - 150 -0.050861749 

26 S-ZORB.TE_2004.DACA R - 101 - Lower bed temperature 400 - 450 0.125808018 

27 S-ZORB.PT_9301.PV Steam inlet unit pressure 0.5 - 1.3 0.034073516 

28 S-ZORB.TE_5101.DACA A - 201 - Outlet main pipe temperature 20 - 80 -0.070532788 

29 S-ZORB.TE_2002.DACA R - 101 - Central temperature of bed layer 400 - 450 -0.167388951 

30 S-ZORB.TE_5001.DACA 
E - 206 - Shell process outlet tube 

temperature 
50 - 150 0.016314492 

31 S-ZORB.LI_2107.DACA DI - 2107  - 3 - 9 -0.064221614 

32 S-ZORB.FC_5001.DACA 
E203 - Condensate water flow of the reboiler 

pipe process outlet 
500 - 3800 0.145043338 

33 S-ZORB.SIS_FT_3202.PV EH - 103, Entrance flow 120 - 350 0.027007018 

34 S-ZORB.PDI_2801.DACA Regenerator - LH, differential pressure  0 - 2.5 1 月 0 日 

35 S-ZORB.PDT_3602.DACA 
Cold nitrogen filter - ME - 114, differential 

pressure  
0 - 1 0.031373324 

36 S-ZORB.FT_3001.DACA D - 113 - Top empty line flow 15 - 250 -0.038813053 

37 S-ZORB.PDT_3503.DACA ME - 112 - Filter pressure difference  - 0.5 - 1.5 -0.044598031 

38 S-ZORB.PT_1501.PV  -  0 - 2.5 0.062982478 

39 S-ZORB.TE_1603.DACA F - 101 - Export branch pipe#2, temperature  400 - 420 0.069820638 

40 S-ZORB.FT_9101.PV Sewage oil outlet device 0 - 85 -0.048698784 

41 S-ZORB.FT_9302.PV 
0.3MPa - Flow rate of the condensate water 

outlet device 
3 - 6500 0.106140608 

42 S-ZORB.TC_2201.OP EH101 - export 44701 -0.063692404 

43 S-ZORB.FC_2301.PV D105 - Fluid hydrogen flow 0 - 350 -0.070339509 

44 S-ZORB.SIS_TEX_3103B.PV 
EH - 102 - Heating element / B beam 

temperature 
80 - 150 0.096650382 

45 S-ZORB.PC_6001.PV Radiation chamber outlet pressure (-0.20) - 0 -0.020598089 

46 S-ZORB.FT_1006.DACA.PV 
Hydrocracking light naphtha inlet device 

flow rate 
0 - 12000 -0.055953368 

47 
S-

ZORB.RXL_0001.AUXCALCA.PV 
Heating furnace efficiency 90 - 98 0.083802416 

48 S-ZORB.AT-0001.DACA.PV S_ZORB AT - 0001 0 - 10 0.060429601 

49 S-ZORB.TE_2501.DACA D - 107 - temperature  100 - 250 0.022922527 
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50 S-ZORB.PT_6005.DACA 
F - 101 - Bottom pressure of the radiation 

chamber 
( - 2) - 0 -0.15994479 

51 S-ZORB.FC_2801.PV Reducer fluidihydrogen flow 600 - 1000 -0.055026486 

52 S-ZORB.PT_2607.DACA 
R - 102 - Nitrogen line pressure behind the 

bottom drain slide valve 
0.1 - 0.2 0.019513913 

53 S-ZORB.FT_3702.DACA Lock the hopper H2 filter outlet gas flow rate 0 - 60 -0.048253188 

54 S-ZORB.CAL_H2.PV Hydrogen oil ratio 0.20 - 0.37 -0.003278637 

55 S-ZORB.TE_1602.DACA F - 101 - Exit branch # 1 temperature 400 - 420 -0.094138792 

56 S-ZORB.PT_6008.DACA F - 101 - Radiation chamber outlet pressure ( - 0.5) - 0 0.014588788 

57 S-ZORB.PDI_2105.DACA 
Backblowing gas accumulator / 

supplementary hydrogen differential pressure 
2.5 - 5.5 0.040187255 

58 S-ZORB.PC_5101.PV Stabilize tower top pressure 0.60 - 0.70 0.010407133 

59 S-ZORB.PDT_2704.DACA 
regenerator receiver top / regenerator receiver 

bottom differential pressure 
25 - 55 -0.063747646 

60 S-ZORB.FT_9002.DACA D203 - Export fuel gas flow rate 300 - 650 0.060782663 

61 S-ZORB.TE_1001.PV Raw material inlet device temperature 35 - 80 0.308709304 

62 S-ZORB.AT_5201.PV 
Sulfur content of the refined gasoline effluent 

unit 
0 - 5 -0.027602935 

63 S-ZORB.TE_5003.DACA C - 201#37 - Tower disc temperature 50 - 100 -0.033993714 

64 S-ZORB.TE_6001.DACA 
Temperature of the flue gas out of the 

convection chamber 
300 - 400 0.275584435 

65 S-ZORB.SIS_TE_6009.PV Preheater inlet flue gas temperature 10 - 350 -0.125533929 

66 S-ZORB.TE_1106.DACA 
E - 101A - Shell process outlet tube 

temperature 
100 - 200 0.109074485 

67 S-ZORB.PDT_2906.DACA ME - 108 - Filter differential pressure  - 2 - 25 0.075830681 

68 S-ZORB.TE_7504B.DACA K - 102B - discharge temperature 2 - 150 0.226814549 

69 S-ZORB.FT_5204.DACA.PV Gasoline products to divide the gas flow rate 0 - 2500 0.022549194 

70 S-ZORB.PDT_1002.DACA P - 101 - AInlet filter differential pressure  - 0.5 - 12 -0.078547629 

71 S-ZORB.PT_7103B.DACA K - 101 - Badmission pressure 0 - 2.5 -0.118420612 

72 S-ZORB.CAL.LINE.PV Reactor line speed 0.2 - 0.5 0.01374251 

73 S-ZORB.TE_7102B.DACA K - 101B - inlet temperature 0 - 50 0.059876355 

74 S-ZORB.TE_1504.DACA E - 106 - Pipe line inlet pipe temperature 2 - 100 -0.336243383 

75 S-ZORB.DT_2001.DACA R - 101 - Lower bed lamination drop 0 - 120 0.064654789 

76 S-ZORB.FT_1501.TOTAL New hydrogen inlet device flow rate 0 - 55000000 -0.124560863 

77 S-ZORB.TE_2902.DACA D - 109 - bottom 3 - 60 -0.148634944 

78 S-ZORB.PC_3001.DACA D - 113 - tension 0 - 0.15 -0.005126743 

79 S-ZORB.PC_1301.PV K101 - Machine export pressure 2.55 - 3.55 0.138586938 

80 S-ZORB.FT_9101.TOTAL  -  425 - 120000 -0.137636853 

81 S-ZORB.CAL.CANGLIANG.PV Reactor storage 15 - 45 -0.089547406 

82 S-ZORB.FT_3304.DACA D - 123 - Condensate water inlet flow rate  - 10000 - 2000 -0.210701158 

83 S-ZORB.LI_9102.DACA D - 204 - level  10 - 90 -0.007610577 

84 S-ZORB.SIS_TE_2605.PV Reator lower temperature 450 - 550 -0.000587591 

85 S-ZORB.LC_1201.PV D104 - liquid level  45 - 55 -0.013299277 

86 S-ZORB.LC_5101.PV Top return tank D201 level 40 - 800 -0.065658954 

87 S-ZORB.FT_5102.PV - 0 - 450 0.004255801 

88 S-ZORB.TE_3112.DACA EH - 102 - outlet pipe 65 - 150 -0.06353213 

89 S-ZORB.TE_2103.PV Reactor upper temperature 410 - 435 0.06463739 

90 S-ZORB.TE_2401.DACA D - 106 - temperature  200 - 350 -0.057708449 

91 S-ZORB.LT_9101.DACA Flare tank D - 206, liquid level  - 5 - 35 0.020043878 

92 S-ZORB.TE_2608.DACA R - 102 - Bottom cone temperature 100 - 500 0.028167303 

93 S-ZORB.TXE_3202A.DACA EH - 103 - Heating element temperature 250 - 500 0.034307998 

94 S-ZORB.PDI_2301.DACA Reactor receiver LH differential pressure 0 - 2.5 -0.078305703 

95 S-ZORB.FC_2432.PIDA.SP Step 3.0, FIC2432.SP 0 - 80 0.031592406 

96 S-ZORB.LC_5002.DACA D - 202 - level  35 - 70 -0.367534428 

97 S-ZORB.PT_7505.DACA K - 102 - Aexhaust pressure 0 - 16 -0.465409958 

98 S-ZORB.PT_5201.DACA Refined gasoline outlet line pressure 0.5 - 0.65 -0.152728079 

99 S-ZORB.AT-0011.DACA.PV S_ZORB AT - 0011 0.4 - 0.8 0.075376838 

100 S-ZORB.TE_1105.PV 
Inlet temperature of raw material heat 

exchanger pipe 
40 - 80 -0.126806086 

101 S-ZORB.TE_1604.DACA F - 101Export branch pipe #3 - Temperature  400 - 450 0.055684382 

102 S-ZORB.LC_3301.DACA D123 - Condensed water tank level 45 - 55 0.014146941 

103 S-ZORB.PC_9002.DACA D - 203 - Top outlet pipe 0.35 - 0.40 0.010646481 

104 S-ZORB.LT_1301.DACA D - 103 - Bottom level  - 1.5 - 9 0.014226803 

105 S-ZORB.LT_3101.DACA D - 124 - level  - 1.8 - 7.0 0.026803878 
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106 S-ZORB.AT_1001.PV Sulfur content of the inlet plant raw material 1.5 - 650 0.023353757 

107 S-ZORB.FT_9401.TOTAL - 15000 - 3500000 0.146409658 

108 S-ZORB.TE_7106.DACA K - 101A - Left exhaust temperature 5 - 65 0.008575939 

109 S-ZORB.FT_2431.DACA - 20 - 1500 0.013303107 

110 S-ZORB.PT_6002.PV Heating furnace and furnace pressure  - 0.60 - (- 0.15) 0.088056027 

111 S-ZORB.PDT_2605.DACA 
R - 102 - Bottom spray head pressure 

difference 
 - 0.5 - 30 0.019988004 

112 S-ZORB.PDI_2703A.PV D110 - Top bottom pressure difference 25 - 60 0.030106471 

113 S-ZORB.TE_3101.DACA D - 124 - Top outlet pipe temperature 3 - 40 0.096853099 

114 S-ZORB.FT_5102.DACA.PV 
D - 201 - Sulfur-containing sewage 

displacement 
0 - 420 -0.015759223 

115 S-ZORB.PC_2105.PV Anti - blowing hydrogen pressure 4.5 - 5.85 -0.127135946 

116 S-ZORB.FT_9403.TOTAL - 
120000 - 

30000000 
0.009042252 

117 S-ZORB.SIS_TE_6010.PV 
Heat the furnace and exhaust smoke outlet 

temperature 
10 - 180 0.016036043 

118 S-ZORB.LC_1203.PIDA.PV 
D - 121 - Sulfur-containing sewage liquid 

level 
35 - 55 0.007427085 

119 S-ZORB.PDT_1004.DACA ME - 104 - passageway   - 1 - 55 -0.009103655 

120 S-ZORB.PT_2603.DACA R - 102 - Lower pressure 0.1 - 0.2 0.02883449 

121 S-ZORB.AT-0006.DACA.PV S_ZORB AT - 0006 0.4 - 0.6 0.003861565 

122 S-ZORB.PDT_2604.PV Top differential pressure of regenerator 20 - 45 -0.024521834 

123 S-ZORB.LI_2104.DACA As calculated by the PDI2104 15 - 45 -0.084132764 

124 S-ZORB.TE_2001.DACA R - 101 - Central temperature of bed layer 
 - 243600 - 

12500000 
-0.035235681 

125 S-ZORB.FT_9001.PV Fuel gas inlet device flow rate 350 - 600 -0.004626248 

126 S-ZORB.FT_1004.PV 3#-Catalytic gasoline intake unit flow rate 0 - 90 0.018072898 

127 S-ZORB.TE_5009.DACA E - 205 - Pipe line inlet pipe temperature 5 - 50 0.048375513 

128 S-ZORB.TE_6008.DACA.PV Preheater outlet air temperature 0 - 300 -0.05193536 

129 S-ZORB.FC_1202.TOTAL 
Accumulated flow rate of waste hydrogen 

discharge 
25000 - 500000 0.157849063 

130 S-ZORB.SIS_PT_6007.PV Air preheater flue gas outlet pressure  - 1500 - ( - 100) 0.000966148 

131 S-ZORB.LT_3801.DACA D - 125 - Level  - 0.85 - 2.00 -0.002986763 

132 S-ZORB.PDT_2409.DACA ME - 115 - Filter pressure difference  - 0.5 - 25 0.007626224 

133 S-ZORB.PT_1602A.PV 
Front pressure of the heater main fire nozzle 

valve 
0.35 - 0.40 -0.029403749 

134 S-ZORB.AI_2903.PV 
Front pressure of the heater main fire nozzle 

valve 
0.5 - 3 -0.006306914 

135 S-ZORB.TE_9003.DACA D - 203 - Fuel gas inlet pipe temperature 10 - 40 -0.0354609 

136 S-ZORB.PT_1101.DACA 
Remove the hydrogen mixing point pressure 

at the circulating hydrogen compressor outlet 
2.5 - 3.5 -0.015476296 

137 S-ZORB.TE_1203.PV D121 - temperature  25 - 50 0.011109287 

138 S-ZORB.FT_1204.TOTAL - 45000 - 2500000 0.010970381 

139 S-ZORB.DT_2107.DACA R - 101 - The upper bed is laminated  - 3 - 10 -0.066159393 

140 S-ZORB.TC_3102.DACA E - 105 - Pipe exit pipe 150 - 300 0.017440465 

141 S-ZORB.TE_2601.PV Reator top flue gas temperature 200 - 400 -0.035380008 

142 S-ZORB.PC_2401B.PIDA.OP Step 9.0 - PIC2401B.OP 15 - 55 -0.025045507 

143 S-ZORB.FC_1202.PV D121 - Top the torch flow 0 - 300 0.001329927 

144 S-ZORB.TE_1503.DACA E - 106 - Pipe line outlet pipe temperature 2 - 50 -0.015407718 

145 S-ZORB.TXE_3201A.DACA EH - 103 - Heating element temperature 300 - 550 -0.01349998 

146 S-ZORB.LC_1203.DACA D - 121 - Water level 35 - 55 0.013867702 

3.2.1. Display of the fitting effect 

The predicted and actual values of the training set and the test sets are shown to facilitate the 

observation and confirmation of the effect of the Ridge regression model fitting to the training set and 

the test set, as shown in Figure 5. 
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Figure 5. Fit the effects map to the training set and test sets 

 

According to the Figure 5, the fitting effect of the training set and the test set of this database is not 

a poor effect. By the operation of the python code, the test set R2 is 98.8% when the α value is 0.6, 

indicating that the Ridge regression model has 94.5% information interpretation, and the training set and 

prediction set MSE are 0.037855 and 0.019342 respectively. 

 

3.3. Comparison of models 

To evaluate the fitting effect of the target model in the literature compared with other models, should 

not only observe the MSE size of each model training set to judge the fitting effect of the training set, 

but also observe the MSE size of the test set to judge the fitting effect of the test set, and also consider 

R2. The comparison results are shown in Figure 6.  

 

 
Figure 6. Comparison of the results of the different models 

 

According to the figure above, the model "caters" to more non-characteristic data points in the 

training set in order to meet the sufficiently low MSE of the training set, which often leads to overfitting 

phenomena, for example decision tree, GBDT, etc. Although the training set of these several models has 

a higher R2, the test set MSE is too large, so it can be considered that the overfitting phenomenon has 

occurred. It shows that despite the model fits well to the training set, the test set predicts relatively poor 

results, so the study does not choose these models. 

Too high training set MSE of some models can lead to under-fitting, such as KNN and SVM models, 

so these models have a weak generalization ability. To prevent overfitting, the Ridge regression model 

added L2 regular term to smaller the test set MSE. In other words, the Ridge regression model has a 

strong generalization ability, [31] and makes the MSE of both the training set and the test set lower, 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 75 (1), 2024, 12-32                                                              26                                 https://doi.org/10.37358/RC.24.1.8580                                                        

    

 

 

which also makes it have a higher R2 compared to the other models. That is, it has a strong explanatory 

power, and the comprehensive conditions also reach the optimal state. Therefore, it can be verified that 

the selected Ridge regression model is better than the other models when analysing the data.  

 

3.4. Parameter inversion 

3.4.1. No operation boundary iterations-solving the optimal operation parameters 

In the previous fitting work of the Ridge regression model, obtained the model that can predict the 

retained RON according to the operating parameters. Therefore, the Gradient descent method can be 

used to iterate on the Ridge regression model, and to get more data needed for the engineering, such as 

the operating parameter scheme after inversion. Then, by comparing the predicted values after each 

iteration, the number of iterations required to reach the expected predicted value. In other words, solve 

the number of parameter inversions when the retained RON after the parameter inversion is closest to 

the RON contained in the raw material, and the optimal operating parameter scheme corresponding to 

the best retained RON can also be solved. At this time, the optimal strategy of the model is constantly 

adjusted without considering the actual value range of each parameter. The relationship between the 

number of iterations and the iteration effect is shown in Figure 7 and 8. 

 

 
Figure 7. Relationship between the predicted loss 

value and the number of iterations for each case 

 

 
Figure 8. The difference between the expected 

values of the optimization strategy 

 

Figure 7 shows that the MAE of the RON predicted value after parameter optimization is represented 

by the blue line, and the MAE of the actual RON of the original operation is represented by the orange 

line. In the absence of the value boundary of the operation parameters, when the number of iterations 

reaches 156 times, the MAE between the predicted value after parameter inversions and the raw material 
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RON starts to be less than that of the original operation. It is shown that, after 156 iterations, the RON 

lost during the refined gasoline process are less than that of the original operation scheme, and the former 

yields more retained RON. Therefore, it can be considered that the operation scheme after 156 inversion 

superior to the original operation scheme. 

Figure 8 shows that the gap between predicted and expected RON values becomes smaller as the 

number of inversion increases. It is found that the gap between the predicted and expected values at the 

inversion number of 500 is near infinity, but is not equal to zero, indicating that the maximum retained 

RON can be almost be reached after 500 inversions. The optimized predicted values in the interval of 

2,000 to 3,000 iterations have neither changed significantly nor fully reached the expected value. 

Therefore, the operation scheme at 2,000 iterations and the corresponding retained RON are taken as the 

optimal scheme. 

In order to better observe the improvement effect after parameter optimization, the contrast effect of 

the actual RON of the original operation, the predicted RON after 2, 000 parameter inversions, and the 

product expected RON of each sample are presented on the line chart, as shown in Figure 9. 

 

 

 
Figure 9. Comparison diagram of actual value, borderless optimization value, and expected value 

 

From Figure 9, there is a clear difference between the green curve representing the actual RON of 

the original operation scheme and the blue curve representing the RON after the parameter inversion, 

but the blue curve almost completely overlaps with the red curve representing the predicted expected 

value, so it is not easy to find the red line. It shows that the predicted value after 2,000 inversions is 

significantly higher than the actual value of the original operating parameters, and also proves that using 

the operating parameters after 2,000 inversions can significantly improve the effect of the RON retention 

in the refined gasoline engineering. According to the python code calculation, the average RON loss of 

the original operation is 1.2772 units, and the average RON loss after 2,000 inversions is 0.01% of the 

lost RON value of the original operation scheme. 

3.4.2. Limit the operation boundary to iterate-to solve the optimal operation parameters 

In the previous step, the reasonable value boundary of operation parameters was not limited, only to 

pursue the target with the highest octane retention value. In practical engineering, the use of this thinking 

may bring adverse effects, such as safety risks, increased operation difficulty, and cost increase. 

Therefore, in the python code here, the parameter value range is added according to the actual 

requirements. As shown in Figure 10 and 11. 
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Figure 10 shows that the MAE of the RON predicted value after parameter optimization is 

represented by the blue line, and the MAE of the actual RON of the original operation is represented by 

the orange line. In the absence of the value boundary of the operation parameters, when the number of 

iterations reaches 573 times, the MAE between the predicted value after parameter inversions and the 

raw material RON starts to be less than that of the original operation. It is shown that, after 573 iterations, 

the RON lost during the refined gasoline process are less than that of the original operation scheme, and 

the former yields more retained RON. Therefore, it can be considered that the operation scheme after 

573 inversions superior to the original operation scheme. 

It shows that, the case that limits the range of operating parameters requires nearly 400 more 

iterations than the case with unrestricted parameters, to reach the retained RON level of the original 

operation and to reach the steady state. 

Figure 11 shows that the gap between predicted and expected RON values becomes smaller as the 

number of inversion increases. It is found that the gap between the predicted and expected values at the 

inversion number of 1,000 is near infinity, but is not equal to zero, indicating that the maximum retained 

RON can be almost be reached after 1,000 inversions. The optimized predicted values in the interval of 

2,000 to 3,000 iterations have neither changed significantly nor fully reached the expected value. In 

order to facilitate the comparison with the unrestricted boundary case, the operation scheme at 2,000 

inversions and its retained RON are still taken as the optimal scheme. 

The contrast effect of the actual RON of the original operation, the predicted RON after 2, 000 policy 

inversions, and the product expected RON of each sample are also presented on the line chart, as shown 

in Figure 12. 

 

 

Figure 10. Relationship between the 

predicted loss value and the number of 

iterations for each case 
 

Figure 11. The difference between 

the predicted  and expected values of 

the optimization strategy 
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Figure 12. Comparison diagram of actual value, optimization value and expected value 

 

From Figure 9 and 12, can find that the inversion effect of the limited operating parameter range is 

the same as that when the parameter range is not limited. The operating parameter scheme with 2,000 

inversions can significantly improve the retention of RON in refined gasoline engineering, and its 

average loss of RON is only 0.01% of the lost RON of the original operation scheme.  

3.4.3. Comparison of predicted values 

In theory, in the presence or absence of operational boundaries, the operation parameter scheme after 

parameter inversion should be different, and the forecast values should be different. To further compare 

the iterative effect of the two cases, the predicted values are shown in the same graph, as shown in Figure 

13. 

 
Figure 13. MAE comparison under different strategies 

 

Figure 13, at 2,000 iterations, the MAE of the RON values for the original operating scheme, the 

scheme with a parameter range limit, and the scheme with no parameter range limit are 1.277240237, 

2.89999×10-3 and 7.6293945×10-6, respectively. It indicates that, the iterative RON values of these two 

cases are very similar, and are very close to the raw material RON values, and the previously calculated 

RON of the average loss can also prove these results. Therefore, the value range of the operating 

parameters of the project can meet the excellent iteration effect, and there is no need to expand the value 

range of the parameters.  

 

4. Conclusions 
The project conducts Ridge regression model modelling and Gradient descent inversion on the data 

in the 2020 Data Modelling Competition. The model for predicting the retained RON after cracking 

catalysis was found, and the model plays an important role in predicting the retained RON and 

optimizing the operation parameters for actual project. 
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The Leave-One-Out method and python code based on the Ridge regression model were used to pick 

out 146 operation parameters and the best hyper-parameter α equal to 0.6, and the R2 of the training set 

can reach 98.8%. The MSE of the training set and test set of the model ware also obtained, and they 

were 0.037855 and 0.019342, respectively. 

The calculated comparative fitting effect and R2 of the Ridge regression model with other common 

models verify that the Ridge regression model has better fitting effect and interpretability than other 

models, and the model is the optimal model with comprehensive conditions. Therefore, can prove that 

the Ridge regression model is relatively reasonable in the literature. 

In the case of setting and not setting parameter value range, parameter optimization was conducted 

by Gradient descent method, and found that the expected value has stabilized infinitely after 2,000 

iterations. The corresponding MAE is 2.89999×10-3and 7.62939×10-6, respectively. The average RON 

loss of the optimal parameter schemes in both cases are all only 0.01% of the lost RON of the original 

operating scheme. 

The literature only pursues the goal of RON maximization. In the future, can explore the optimal 

operating parameters and maximum RON in pursuing the maximization of sulfur element control and 

regeneration adsorbent recycling, and the direction has more social significance. 

In the actual project engineering, businesses need to comprehensively consider the profit, safety and 

environmental protection to determine the operation parameters adopted. If the researchers only pursue 

the optimal output value without combining the actual engineering needs, though the optimization effect 

is very good, it is difficult to be applied by enterprises. However, because the database contains no 

relevant data about cost and profit, the optimal operating parameters and the maximum profit value under 

the profit maximization situation cannot be calculated. 

The modelling thinking, judging the appropriate number of iterations, and Python code may be used 

or used in many industrial engineering, especially the engineering with a large number of operating 

parameters, and, nonlinearity and mutually strong coupling between the variables. And even some 

projects only need to replace the original data, and slightly modify the range of the upper and lower 

boundary value conditions, so the thinking provided in the literature is highly malleable. 

 

Acknowledgments: The author wishes to acknowledge Dr. Yang Xiaojun, associate professor of 

Chinese, Wuhan Textile University, for his valuable suggestions for revising this research paper. We 

wish to thank the timely help given by Lyu Hairong in improving timely the method of the paper format. 

 

References 

1.ZHOU, B., GUAN, D.X., LIU, G.B., WANG, H.C., Properties and optimization of gasoline blending 

component. Liaoning Chemical industry, 51(9), 2022, 1320-1322.  

https://www.elsevier.com/data/promis_misc/BMCL Abbreviations.pdf 

2.XU, Y.H., Progress of catalytic cracking technology in china. Scientia Sinica (Chimica), 44(1), 2014, 

13-24.  

3.LIU, Y. C., LI, J., Analysis of factors affecting gasoline octane number loss in S Zorb unit. 

Petrochemical Design, 36(4), 2019, 12-15+5.  

4.ZHAO, L., LI, X., XIE, Y.F., YI, J.W., WU, J.F., HU, W.J., Prediction method of gasoline octane 

number based on adaptive variable weighting, Control and Decision, 37(10), 2022, 2738-2744.  

5.ZHU, X., JIANG, J.C., PAN, Y. and WANG, R., Prediction of octane number of alkanes based on 

support vector machine, Natural Gas Chemical Industry, 36(3), 2011, 54-57. 

6.AMARAL, L.V., SANTOS, N.D.S.A., ROSO, V.R., SEBASTIAO, R.C.O., PUJATTI, F.J.P., Effects 

of gasoline composition on engine performance, exhaust gases and operational costs, Renewable 

Sustainable Energy Rev., 135, 2021, 110196. https://doi.10.1016/j.rser.2020.110196. 

7.CHEN, Y.Z., HU, H., REN, Z.C., CHEN, A.G., Analysis of Octane Number Loss Model of FCC 

Gasoline Refining Unit Based on XGBoost and Improved Grey Wolf Optimization Algorithm, Acta 

Petrolei Sinica (Petroleum Processing Section), 38(1), 2022, 208-219.  

https://revistadechimie.ro/
https://doi.org/10.37358/Rev
https://www.elsevier.com/data/promis_misc/BMCL%20Abbreviations.pdf


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 75 (1), 2024, 12-32                                                              31                                 https://doi.org/10.37358/RC.24.1.8580                                                        

    

 

 

8.WANG, C.X., Study on heavy oil/bio oil co catalytic cracking in riser and its micro reaction 

mechanism, Beijing University of Chemical Technology, Beijing, 2019. 

https://doi.10.26939/d.cnki.gbhgu.2019.000209. 

9.LIU, Y.X., Structural Design of MeAPO-11 Molecular Sieve and Its Application to Catalytic Cracking 

Catalyst, China University of Petroleum (East China), Beijing, 2017. 

https://doi.10.27644/d.cnki.gsydu.2017.000031. 

10.HARDING, R.H., PETERS, A.W. NEE, J.R.D., New developments in FCC catalyst technology, 

Applied Catalysis A, General., 221(1), 2001, 389-396.https://doi.10.1016/S0926-860X(01)00814-6. 

11.SUN, D.L., XU, J.H., WEN, H.J., WANG, Y., An optimized random forest model and its 

generalization ability in landslide susceptibility mapping: Application in two areas of three gorges 

reservoir, China, J. Earth Sci., 31(06), 2020, 1068-1086. 

12.HAN, Q.J., ZOU, M., HUO, H.L., Prediction model of octane number loss based on real-time data 

of gasoline catalytic cracking process, Experimental Technology and Management, 39(01), 2022, 41-

45.https://doi.10.16791/j.cnki.sjg.2022.01.008. 

13.JIANG, W., TONG, G.X., Construction and analysis of gasoline octane number loss prediction model 

based on improved PCA-RFR algorithm, Acta Petrolei Sinica (Petroleum Processing Section), 38(01), 

2022, 220-226.  

14.QIN, Q.T., GU, H.H., Research on octane number loss based on vector autoregressive model, 

Software Engineering, 25(09), 2022, 34-41.https://doi.10.19644/j.cnki.issn2096-1472.2022.009.008. 

15.HODSON, H.T., Root-mean-square error (RMSE) or mean absolute error (MAE): when to use them 

or not, Geosci. Model Dev., 15(14), 2022, 5481-5487.https://doi.10.5194/GMD-15-5481-2022. 

16.TIAN, S.L., CHEN, T., TANG, M.N., YANG, L., Research on data de duplication method based on 

correlation coefficient and determination coefficient, Digital Manufacture Science, 17(03), 2019, 241-

244. 

17.ZHANG, F.Y., SU, X.C., TAN, A.L., YAO, J.J., LI, H.P., Prediction of research octane number loss 

and sulfur content in gasoline refining using machine learningPrediction of research octane number loss 

and sulfur content in gasoline refining using machine learning, Energy, 261(PA), 2022. 

18.YAND, Y.N., YANG, REN, Y., MAO, A.G., TIAN, H.P., Analysis of Technical Factors Affecting 

the Change of Gasoline Octane Number in FCC Unit, Petroleum Refinery Engineering, 49(06), 2019, 

32-35. 

19.ZHANG, Z.Y., LI, Z.Q., LI, Y.L., LI, G.Q., Prediction of FCC Unit Gasoline Yield by GA Assisted 

BP Neural Network, Petroleum Processing and Petrochemicals, 45(07), 2014, 91-96. 

20.WANG, J., CHEN, B., LIU, S., ZHAO, M.Y., OUANG, F.S., GAO, P., Optimization Model of 

Octane Number of S Zorb Refined Gasoline and Its Industrial Application, Petroleum Processing and 

Petrochemicals, 53(05), 2022, 88-94. 

21.ZHAO, H.S., WANG, Y.Y., SUN, A.M., Based on ARIMA model and 3 σ Detection method of water 

intake anomaly based on criterion, Water Resources Informatization, 2022, 35-41. 

https://doi.10.19364/j.1674-9405.2022.01.008. 

22.JIN, Z.J., LUO, X. J., TAO, Q., ZHAN, G.P., HE, Y., RO, X.Y., PAN, D.C., Study on endpoint 

determination method of tablet coating based on 3σ criteria and logic regression. Zhongguo Zhongyao 

Zazhi. 46(16), 2021, 4124-4130.https://doi.10.19540/J.CNKI.CJCMM.20210208.301. 

23.FENG, D.C., CHEN, F., XU, W.L., Efficient leave-one-out strategy for supervised feature selection, 

Tsinghua Sci. Technol., 18(6), 2013, 629-635. https://doi.10.1109/TST.2013.6678908 

24.LUOR, D.C., A comparative assessment of data standardization on support vector machine for 

classification problems, Intelligent Data Analysis, 19 (3), 2015, 529-546. 

https://doi.10.3233/IDA-150730. 

25.CHOI, S.H., JUNG, H.Y., KIM, H., Ridge Fuzzy Regression Model, International Journal of Fuzzy 

Systems, 21(7), 2019, 2077-2090.https://doi.10.1007/s40815-019-00692-0. 

 

 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev
https://doi.10.16791/j.cnki.sjg.2022.01.008


Revista de Chimie                                                                                                                                                                
https://revistadechimie.ro   

https://doi.org/10.37358/Rev.Chim.1949 

 

Rev. Chim., 75 (1), 2024, 12-32                                                              32                                 https://doi.org/10.37358/RC.24.1.8580                                                        

    

 

 

26.YASSEN, M.F., ALDUAIS, F.S., ALMAZAH, M.M.A., Ridge Regression Method and Bayesian 

Estimators under Composite LINEX Loss Function to Estimate the Shape Parameter in Lomax 

Distribution, Computational intelligence and neuroscience, 2022, 2022, 1200611-1200611. 

https://doi.10.1155/2022/1200611. 

27.HU, L.P., Ridge regression, Sichuan Mental Health, 31(03), 2018, 193-196. 

28.CHOI, S.H., BUCKLEY, J.J., Fuzzy regression using least absolute deviation estimators, Soft 

Computing, 12 (3), 2008, 257-263.https://doi.10.1007/s00500-007-0198-3. 

29.CZAJKOWSKI, M., KRETOWSKI, M., Decision tree under-fitting in mining of gene expression 

data. An evolutionary multi-test tree approach, Expert Systems with Applications, 137 (C), 2019, 392-

404.https://doi.10.1016/j.eswa.2019.07.019. 

30.YANG, Y.L., LI, C.X., Quantitative analysis of the generalization ability of deep feedforward neural 

networks, Journal of Intelligent & Fuzzy Systems, 40(3), 2021, 4867-4876. 

https://doi.10.3233/JIFS-201679. 

31.SHAO, Z.F., ER, M.J., Efficient Leave-One-Out Cross-Validation-based Regularized Extreme 

Learning Machine, Neurocomputing, 194, 2016, 260–270.https://doi.10.1016/j.neucom.2016.02.058. 

 
Manuscript received: 18.11.2022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://revistadechimie.ro/
https://doi.org/10.37358/Rev

